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' ._i! ,.:' ._: _" ., : ,_ ,-. ! ,., ,_, . . INTRODUCTION.

' The following paper is a dissertation originally presented by the author to the University
of Goettingen, It was intended principally for the use of mathematicians and physicists. The

author is pleased to note that the paper has aroused interest in other circles, to the end that
the National Advisory Committee for Aeronautics will make it available to a larger circle in

America. The following introduction has been added in order to first acquaint the reader

with the essence of the paper.
In the following development all results are obtained by integrating some simple expressions

or relations. For our purposes it is sufficient, indeed, to prove the resultS for a pair of small
elements. Tlie qualities dealt with are integrable, since, under the assumptio_q we are allowed
to make, they can not be affected by integrating. We have to consider only the relations

between any two lifting elements and to add the effects. That is to say, in the process of inte-

gi'at_g each element occurs twice--first, as an element producing an effect, and, second, as an

•element experiencing an effect. In consequence of this the symbols expressing the integration

look somewhat confusing, and they require so much space in the mathematical expression that
they are apt to divert the reader's attention from their real meaning. We have to proceed up

to three dimensional problems. Each element has to be denoted twice Coy a Latin letter and

by a Greek letter), occurring twice in a different connection. The integral, therefore, is sixfold,

six symbols of integration standing together and, accordingly, six differentials (always the same)
standing at the end of the expression, requiring almost the fourth part of the line. The meaning

of this voluminous group of symbols, however, is not more complicated and not less elementary
than a single integral or even than a simple addition.

In section 1 we consider one aerofoil shaped like a straight line and ask how all lifting

elements, which we assume to be of equal intensity, must be arranged on this line in order to
offer the least drag. •

If the distribution _s the best One, the drag can not be decreased or increased by transferring

one lifting element from its old position (_) to some new position (b). For then either the
resulting distribution would be improved by this transfer, and therefore was not best" before, or
the transfer of an element from (5) to (a) would have this effect. Now, the share of one element

in the drag is composed of two parts. It takes share in producing a downwash in the neighbor-
hood of' the other lifting elements and, in consequence, a change in their drag. It has itself a

• drag, be ix_._tuated in the downwash pr_tu¢_ by the other elements.

...!_Considering only two elements, Fig, I _ that in the case of the liftingstraightlinethe

two-downwashes, each produced by one element in the neighborhood of the other, are equal.

For.thisreason the two drags of the two elements each produced by the other are equal, too,

and. hence the two parts of the entire dz_:o_ the wings due to one element. The entire drag



'_ _ REPORT NATXOlCAL ADVISORY CO]_[T'A'J_ FOR A_NAU_OS.

• :'_: produced by one element has twice the value as the drag of that element resulting from the

• - downwash in its environs. Hence, the entire drag due to one element is unchanged when the
element is transferred from one situation to a new one of the same downwash, and the distribu-

:: tion is the best only if the downwash is constant over the whole wing.

In sections 2 to 6 it is shown that the two parts of the drag change by the same value in
all other cases, too. If the element8 are aituated intern transverse plane, the two parts are

equal. A glance at Fig. 2 shows that the d?wnwash produced by (1) at (2), (3), (4), and (5)

..t. 'r,_. _ J-

is equal But then it also equa_ the d0wnwash dueto (4), say, produced at (1). This holds

true evea_for the oomponeatof the downwash in the direotion of the lift if the elements ave nor-
.realto each other (Fig. 3.); for,t_ componan_ is proporfioaal _Ly/r s, _ to the _y_nbols

• _ _._.
of the figure. Hence, it is p_ved for lift of any inclination,,horn, ntal and verfic_i,e_mts

able,by combination, to.produce liftin any direction.. " _ . .
.;. Th. _.,_.onl_the_uestio_wheat the _o p_ of th__ -- _,o_•if _e

" :elem_m_ are situated one behind the other--that is to _ay, in different longitudinal position_.

.__i•i_. iTh_y!ar¢ .not;but their sum. is independent of the longitudinal distance apart. T o. prove'

?'-'- linearlongitudinalvorticesin the inverse direction. The reader observes that i_hetra_.verse

vortices (2) and (3) neutralize each other; the lon_tudinal linear vortices, however, have the

_ " " _me aign I and all four vortices form a pair of vortices .running from infinity to _ty. The

.drag,.pr_ducect_by the Combinetion of. (1). and this pair, is obviously independent of the iongi-
.tudinal positions of (1) and (2). But the added element (3) has no_ changed the drag, for (1.)

and ,(3) are _itua_d symmetrically and produce the same mutual dow_wash. The direction

o__,_t,h_wever,:ismve_,and_.f-- _e two_,_.have_e_--_ ,_.d_th_,--
iszero.

Ifthe two liftingelements are perpendicular to eac_ Other (chapter _),a Similarproof can

be given.
Sections 6 and 7 contain the conclusions. The condition for a minimum drag does not

depend upon the lo.ngimdinal coordinates, and in order to obtain it the downwash must be
assumed to be constant-at all points in a transverse plane of .a corresponding system of 'aero-

foils. Thin is not surprising; the wings _ct like two dimensional objects _accelerat_ug the air

passing _n an _n_nlte transveme plane at a particular moment. Therefore the calculation
leads _o _he consideration of the' two dimensional flow _bout -theprojeotion of the wings on .a

• transverse plane.



_U_ INDUCED DRAG OF AEROFOILS. 5

Section 8 gives the connection between the theory in perfect fluids and the phenomenon
in true air. It is this connection that allows the application of the results to practical questions.

I. THE LIFTING STRAIGHT LINE.

A system of aerofoils moving in an incompressible and frictionless fluid has a drag (in the
direction of its motion) if there is any lift. (perpendicular to the direction of its motion). The
magnitude of this drag depends upon the distribution of the lift over the surface of the aerofoils.
Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aerofoil section or the
angle of attack. The purpose of the investigation which is given in the following pages is to
determine (a) the distribution of lift which produces the least drag, and (b) the magnitude of this
minimum drag.

Let us first consider a single aerofoil of such dimensions that it may be referred to with
sufficient exactness as a lifting straight line, which is at right angles to the direction of its flight.
The length or span of this line may be denoted by Z. Let the line coincide with the horizontal,
"orz axis of a rectangular system of coordinates having its origin at the center of the aerofoil.
The density of the lift

A'-dA

where -4, the entire lift from the left end of the wing up to the point z, is generally a function of
z and may be denoted byf (z). Let tim velocity of flight be re.

The modern theory of flight I allows the entire drag to be expressed as a definite double
integral, if certain simplifying assumptions are made. In order to find this integral, it is, neces-
sary to determine the intensity of the longitudinal vortices width run_from any lifting dement
to infinity in a direction opposite to the direction of flight. These vortices are generally
distributed continuously along the whole aerofoil, and their intensity per unit length of the

r,L-_.p . dA'--_ (2)

Where p is the density of the fluid. Now, for each lifting element d,_, we shall calcUiate the down-

wash _v, which, in accordance with the Iaw of Biot-Savart, is produced at it Dy all the longi-
tudinal vortices. A single vortex, beginning at the point z, produces at the point z-_ the
downwa_h

_ , "clw- • dA' • _------z (3)

Therefore the entire downwash at the point _ is

• ": "' " " - ' +I , i:: . • ., ,

w-_---- • dz , (4)
J

The integration is to be performed along the aerofoil; and the principal value_ _ _-_

be takenat thepointz--_. This_e _I_oappliesto allofthefol]o_ in_ _

follows that tha drag according to the equation : 1" : _ , _ " :""' " " r " " _ "

is
+Z t +l •

A'd_] . __ . ....
t-½

s _ L. Prsndtl, Tragflllg_lth_'ie, I. Mittellun|. Nachrichten d¢_ G_. _L WL_. zu G6t_, 1918.
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{

- ? 4 , (e)

f here _'_zxi_es the ,derivative of f with respect to z or [."The entire lift is represented by ;:

Hence the solution of the problem to determine the best distribution of lift depends upon "
the det_fion of the f_ctionfso fl_t the double integral ;,, ......

shall have a value as smaU as possible; while at the same time the value of the simple integral

J,- f/ (=)_-eomt, _, _ .'._ '_ .. ..... :, .. (9)

' ...... The _n_t step towards the solution of this problem k to'_cnm the .first var_tion of-Jr '_,-

:, , The second integral on the right side of (10) can be reduced to the fu_ By exche_ng the :
symbo]_ z and _ and by partial integration with respect to z, consideringf(_)as the integrable
tsctor, there is obtained ....

+,1 _g " ,,i,,1' ! +It .... _ :_ ,:.,
/

The second member disappears since f-O at the limits of integration." Further, the right
hand part o! (11)

• " _,1 • _ • ....

upon substitution of the new varisbles z and t-z-_ for z 'and [;'is transformed intO' _i;_,.
,. . - .... ". :. " : -

- ....

L I 1 I _ . - I i

• If thk ws_ aet trus, them weuld be laaaltt v_e/tlss st them palnla. _ .
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NOW

• ._" .

so that, finally,

,, , ' /Z\ f/ Z\ ,_I

.+½. i z _ .z*_ ,+½

or,sincef disappears at the limitsofintegration,

. . , , ":z_/ s+y ,

which, upon the replacement of the originalvaxiables,becomes

+_;f'(0d_

J

'+; +_ " .+_ " +t ' " .

-½ _ "_ _ -_

S_tituting thin.in (10).therefinallyresults

,: _,- s/(x)#a a_
-½ -½.

(12)

. . , ,, _'.

(is)

From which ,_ e_mditio_ for the minimum amount of drag,takingintoconsiderationthe

second oondition (9),is,

_'_(0d_+_= 0 04)

or,when equation (4) istal_eninto consideration

,, "'-- _" "_eon_t:-_ : - - (15)

" _ _sa_ o_u_ for the m_nim_m of _ for a li/t_n_ stra_J_ Z{_ is _ th_ doum-

u_sh ?ro_ce_ by the lon_zl _,_s be constant alo_ O_ _re line.
That this necessary consideration is also sufficient results from the obvious meaning of

the second variation, which represents the infinitesimal drag produced by the variation of the

lift if it alone is acting, and _herefore it is always greater than zero.

., .,- : ;. 9_p_s._u_ U_L_G _ LrmO m A sv_ss_

::_ " The method just developed may be applied at once to problems of a more general nature.

If, instead of a single aerofoil, there are several aerofoils in the same straight line perpen-
dicular to the direction of flight, only the limits of integration are changed in the development.

The integration in such cases is to be performed along all of the aerofoils. However, this is

none_mtiql for all of the equations and therefore the condition for the minimum drag (equa-

tion 15) applies to this entire system of aerofoils.

• • . - .

._. _ _ .1._._.',_'_ _, -_: ,+,_-_ "_..:. ",_:_!_I " _:_'_ :,._- .::'_ ':,;-. ;.'.,_. J_, '., ,_ _>,,. _-- " .. -.
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Let us now discard the condition that all of the lifting lines ai-e lying in the same straight
line, but retain, however, the condition that they are parallel to each other, perpendicular to
the line of flight as before, and that they are all lying in a plane perpendicular to the line of
flight. Let the height of any lifting: line be designated by z or l'. Equation (3) transforms into
a similar one which gives the downwash ,.produced at the point x, z by the longitudinal vortex
beginning on the lifting element at the point _':

JA'
b _

• - (E-_P +-(.I'-'z)'_:.... .... (Sa)
J

The expression, which must n_w'bea minimum,-Is "-i._'

J,- . • r) z (s

with the unchanged secondary condition

These integrals are to be taken over all of the aerofoils.
This new problem may be treated in the same manm_ as the first. _,.-:L.__,;i ,: ..... ,_

('.I;. ....

• !....- ,.:
• , , . * > m, _

1
is always to be substituted for __---_- It may l_, _hbwn .thkt,this 'sulmtitutkm :dom_mot

-:': affect the correctness of equations (10) to (15). Therefore

:"-. _, _I) ,.- !._, _:,.,- ....

_ :S iS again obtained as the necessary condition for the minimum of the entire drag. " "., , -..

.-.. "_ " Finally,..this'_L_o halds true for the limiting ease in .which, over a limited.portion of,_
transverse plane, the individual aerofoils, like venetian, blinds, lie so ,closely togethel_._that
they may be considered as a continuous lifting part of a plane. Including all cases which
have. been considered so fax, the condition for a minimum of drag can be stated:

Let the dimenM,on_ of a sya.em of aerofat_s be #t_m, _tXo_ in the dlreaion of flight bdn 9 small
in _ml_r_on with those in o_er direet_on_. Let t_ lift be everywhere directed ve_ca_y. Under
these_ndi_iom, the dawnwa_h praduc_ by the longitudinal vort_¢_ m_t be uniform at al_ pair_
on th_ am'ofage in order that there may be a minimum'of.drag for a ._ total:lifl_ ;:. ,,, , _,_

"'" '('!'_ & THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS.

.The three-dimensional problem may be based upon the twu-dhnensional one. Let now

the dimensions in the direction of flight be considerable and let .the lifting elements be dis-
tributed in space in any manner. Let y or _ be the coordinates of any point in the dire_-

tion _fflight., ,For the time be'.mg, all lifting forces are assumed .to be vertical . • _: i.: ,.
. e calculatmn of the denmty of drag for this case is somewhatmor e complicated thani_

the preceding cases. Consideration must be given not only to the longitudinal vortices, wl_ich
are treated as before, but also to'the transverse vortices which run perpendicular to the lift at
s_y poi_b an d to the direction 'of flight. Their intensity at .any point :where there is_.alifting
.element is ,,:, :.-. .

: _. r-A'. (z,V,z)'--" " .....

The density of drag, _l_ no_ has two components, W_ and W_ithe first being due to the trans-
verse vortices and the second to the longitudinal vortices. , ..... _
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For the solution of the present problem only the total drag of all lifting elements

w-fwd.z

is to be considered. In the first place it will be shown that the integral of those parts of the
density resulting from the transverse vortices

w,-Sw,,d=
does not contribute to the total drag. A small element of one transverse vortex of the length dz

at the point (z, y, z) produces at the point (L '/, _) the downwash
!" . . , -r • .

where ' ' '

r,- (_-z),+ (_-y), + _-- z),.
Therefore . , •

This integration is to be extended over all the aerofoils. It is possible to write this expression
in such a manner that it holds for a continuous distribution of lift over parts of surfaces or in
space. This is true, moreover, for most of the expressions in this paper. Now, exchanging the
variables z, y, z, for _, _, _', in equation (17) does not change the value of the integral, since the
symbols for the variables have no influence on the value of a definite integral. On the other
hand, the factor (_-y), and therefore the integral also, changes its sign. Hence

-- w,-o (18)
and, as stated,

W- W,. (19)

Tlwrefor_ t_ entire dra_ 'may b_ _ wi_o_t taking into consideration t_e transverse
cortices.

The method of calculating the effect of the longitudinal vortices can be greatly simplified.
At the point (_, ,b _') that part of the density of drag resulting from a longitudinal vortex begin°

ning at the point (z, y, z) is

; swhere " " "

and

The entire drag is

" _'4rJ e
w

ds; e - (_-zP + (,_-s)'+ _- z}'. (21)

Now, in the double integral (22) the variables z, _, z may be 'exchanged with _, _, _, as before,

without _ff_fi_ the value of the definite integral. Partial integration may then be performed
twice, first with respect to _ and then with respect to z. The substitution results in

........ . ff:<,.,,,,>: ,,
_0773----21_2
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;et,fl_, poi_ _z, z)" therefore pr_luee at the point (_;_) the: dow_wJm]_ and the-t_ezm_e_ veloeit_r

. . 1 /dA' dB'\_zt;-z. : ,* , (3b)

According to the above, the density of the drag is _-:._c , ,:.._ .,i : ., i ,;, _.._ ,,., ...,. ,
_.: ;_,._,;,_r.i'., _':t_,:_ "_,!'_ /[_t",K ;2 _: "r_':l!" _::_ ,_,' ";_tii,-;'_: .,_,_ _._ ':I t ..;_:L_ :. i -_",,_qi l_

• (_ I_'_1, --_t-_ --_t_Z
'13o '/3o .:- ; -_ L, - .

' [" With these symbols there results 'for_th'_" to_al dr//g _he expression

,-'_ *: ,_;.!'dy:,_ _ ._i,::.-'_ '" "" " ' ,'_U " -[.t'. ',.' ,. ',"

All of these integrals are to be taken overlall of the lifting surfaces. Now the first two

._tegralshave form_ tecrssponding to _he integral in (8), and therefore there is a possibility of
•sul_titutingi.(t2), for these.. A similar relation also holds for the last two integrals... Forexam-
ple, the variation of the third integral is .... h,,_ .. .' ,_ ,u., :.........

• ,. ., , .

Now in the first _.,er_'oa tho right-baud side tho v'_rli_ble__! _d z may _ exchanged .with
•_m&_'. It may then be partially integrated with respect Ito.¢$, the integrable factor being df_ (_,D.
This gives ,

• " _:_'_," '"l _'_I _'''_ '* i ] _ , _ r' _,,'_ t J, .J -'I _, ;'],. "

This may be partially integrated with respect to _, ih;' mtegrable' faet6r being

• d " dz'.,t _ ....' " _( _ ':v': ' _ / _ '_ .... " '

n'enes the first _;m" of _e var_atioh Of the third int_.al._ (;30) can be transformed into the
second term of the variation of the fourth integral of this equation• In a similar, manner ,the
two other terms may be transformed into each other. It .is therefore demonstrated that the

variation of the entire drag-may, be _ritten. - _; M` "_ i' " _ k I _ _ _" _ L . { _.[ I ( '_
r

_ _:' i , . : _

, 2f (13b)
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Two problems of variation can now be stated. In the first place limited parts of the surfaces
may be at our disposal, over which the vertical ]fit A and the horizontal transversal force B
may have any distribution. Only the total lift , _ _

A. fff (ffi_)d_z- eonst. (9b)
will be given in this ease. • . . - :
.... Then : " ;

w_.conAt. -ws; _-o .... (15b)

is the condition for the least _.
If, however, the lifting parts are slmi_ to lines, there is generally One other condition to

fulfill. It is then required that the lift disappear everywhere along the direction of the aerofoils.

That is to sayj
fsin _-Fcos B-o " (34)

where _ is the angle of inclination of the aerofoil to the horizontal X-s_ds. In order to add the
new requirement (34) a second Lagrange constant _ is introduced. The condition for the least

drag is now "

_+_+_,o. ,- _-_-o _ c-,_
sad after the elimination of _

w cos B+U sin _=_o. cos _ (15c)

constant 2 Z being replaced by -_o, ss before. In words: : '_ - '_- , ..... :
If a_ liflimy _ _re i_ one transwrse pb_, the compon_ of t_ vdodty perper_ivul_

to _ _ia_, _u_l by th_ lon_d_n_I vo_ti_, ,n_st be 1_o_io_l, at _ l_fli_ _t_, to

& LIFT DISTRIBUTED AND DI]gECTED IN ANY MANN_ .

The results obtained previously can be generalized not only for lifting elements distributed
in a transverse plane but also for lifting elements distributed in anymanner in space. That
psrt of the total drag resulting from the transverse vortices is, in the general ease

+/ f f f f fF,=,,,,,F¢,,,,,r,_,,a_,_] ..
i.

Both t_ms have the same form as the integnd m (17). The dmonstration for (17) therefore

applies to both. In the general case also the total drag can be calculated from the longitudinal
vortices without taking into consideration the transverse vortices: .,

w-. _ .lfffff ff_,_,,_>/ (_,.,r_,_,_a_
_rPU'L.J JJJJJ" ....

f f f f f f F',=,,,,_>F¢t,,,,r>,_,_,,_;,at+

y, z) F' (_, _,

In this u in (20), • ' " " L : " flS )'!.-- "'; ......... " ......

, fv ,_,- &; e- (_-z) + (,_+_.zy,
f " . . ,

,. _ r_
¢,- & ....
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The first two terms in (22a) have the same form as the right-hand side of (22), and the same
conclusions are therefore valid for each. It can be proved directly for (22a) as for (22) that
each of the two double integrals is independent of the longitudinal coordinates of the lifting
elements. ,This proof can no_ be extended over the last two integrals of equation (22a).

The .third integral, after changing the variables, becomes

whero :

• . !_ -_ ,,, :.-,,:'_ -._,,, ..:, .•. .. : ,

Now, let F' be ehoeen as the integrsble factor and be partially integrated with respect to ¢.
• _ _,

As in the previous cases, the second integral to be expected vanishes since f as well as F
d- d-

disappear at the limits of the integration. Next _ _x, - - _ ¢_,ischosen as the integrable factor

_wd partially integrated with respect to z. By _, by analogy, is meant ,.
o,

• , If If/If (", _, ") F' (_,,t, r) _,cZ_t_d._tr- (37)

Now _ may be transformed, 'the variable s in the defining equation being replaced by ,9+ y-s.
The result is that

• _.- _. o= (_-_1. +'(,-,1.+ (r-.)'.

'It is seen that the integrand agrees with that of the defining integral _,. Therefore, and since
the right-hand side of (37) contains the same function under the double integral as the fourth
turn in (22a), this fourth term can be combined with the transformed third member. This

gives ' "

" ' " .... IfS/ffv:c , ,,)s' .,
where ,: , .... ,.... , ,,

÷_'_ and therefore the two sid_ of (38) are independent of y. This is therefore demon-

strated for the whoTe right-hand aide of (22a).

_,' _-_.:_'_..L, _, -, • _i-' ..... _ ., " :.........
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," _ t_Ca_r_istaar.e _ alwa_ independent of _ b_udinal c_o_ina_ of _ li_ng _;
" :And furth_': -i',. ;,:, -:.,:. ,_.'. ._. "".. ' ._ ._, , -, - . -_..'_ " . ', _ ---

T_'moafmmrabh d6_e_l_a/o_ oJ _ '_gg,.n_t2_.refer_ _o.f/_ ¢o¢d drag, occta'e whe_ _/_
also t_ ease/or t_ _oi_km oJ t_liflLW d._,nen_on a _amm_r_ plant. _.,- ,,. "::: : •,_

That is to say, all of the lifting ,elements are projected 0n, a plane perpendicular to the

dir0ction of flight, and any _lom_t _o obtained has a liltequal t6 the sum of the lifts of all lifting
dements projected onto it,,=._,_:',o_\_,_:. :_, .,, ::... . • _ .: _t, ," _ .!., .-._" :

DETERMINATION OF THE SOLUTIONS. ,,

The previous demonstrations show that the investigation for the distribution of lift'which

causes the least drag is reduced to the solution of the problem for sys. t_m of aerofoils which are
situated in a plane perpendicular to the direction of flight. In addition, the condition for least

drag (15c), which becomes the condition of uniform downwash (15) if the lift is vertical, leads
to a problem which has often been investigated in. the theory of two-dimensional flow with a

logarithmic potential. The flow produced within tlle lifting transverse plane by the longitudinal
vortices originating in it is,.indeedr of this type. Each such vortex produces a distribution of

velocity such as is produced by a two-dimensional vortex of half its intensity, and the whole
distribution of velocity is obtained by adding the distributions produced by the longitudinal
vortices. The potential flow sought is determined by the condition of (15c). Let it be com-

bined with the flow. of constant .vertical. upward motion .s_ --._e., The resulting flow satisfies
the condition at the boundaries -.

and them results, for the _ of lifting lines:
The two 8i_aJ pote_ flow is,of _ _pe _ endrd_ _ l_ftinf/ Knes, and at a great

Within lifting surfaces the vdocity is zero_aocording to the condition (15b), and the fluid
therefore flows around thevontou_ _,':_L._,:_ . .-_ _'*:_-- v :,__ ! _i._,'!_ -

The intensity of the longitudinal vortices at any point is twice the rotation of the two
dimensional flow. In the e_sb _f the'liftingVlines, ' therefore,: i_h6 density of the longitudinal

vortices is double the discontinuity of vdocity _om one _de to the other. The intensity of the
transversal vortices is detemnined by integrating the lo/igitudinal' vortices along the aerofoils
and therefore equals twice the difference of the velocity-m_gral produced on the two sidee of
the aerofoil. Now the integral of the velocity produced is identical with the potential and

hence it appears: ........... _" ':' " " " .....,:

_potential _- ¢. and has the value , - _,

---- - 'i' ....... : ...... (40)
Hence the total lift obtained by integratingover all aerofoils is

Sometimes a transformation of this equation is Useful. In order to obtain it, suppose that

aI1 of the lifting lines are divided into small parts, Then, Cn the two ends of each lifting dement
there begin two inverse longitudinal vortices, the effect of which on a distant point is that of
double vortex. Their velocity-potential ¢ and their stream function ¢ may be combined in the

complex function ¢ + _, and, not considering the 6xistence of a parallel flow, which is without

any importance in the calculation, this complex function has the form for a lifting line,

.... .... (42)• . _. , d(¢+_c).dA+_dS, _-,,;,,. ,z-z,, " ","
t_
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where z represents z + iy and z0-ze+iy0, zo and Y0 being the coordinates of the lifting elements of
the.line, For a lift distributed over areas a similar equation can be formed. The integration of

(42) gives , _ . . /'JA+/dB

'- :' _Now the residuum of the integrand at infinity is dA + _dB and therefore the residuum of the

integre] is A +/,B. Therefore the expression can be written. _

" _..,_ .i _ =• ::}. .:::::,_ _ A-2nopR [Res(_+Q0)] ,: . (41a)

where the last part means the real part 'of the residuum of _ + i_o at infinity. In the most im-

portant case of horizontal aerofoils the residuum itself is real and can be used directly to calcu-
la_ the lift. The density of drag at any point is proportional to the perpendical component of

the density of lift and is W'--_°. AI from which results W- wwo.A. Making use of (41) one obtains

(43)

(43a)

_. The integral in. the denominator of (43) represents an area characteristic of the system of
• : ! _foils investigated. Frequently the easiest method of calculation is to'assume from the

: : beginning the velocity me at _ty to be unity. :
•_ ': The case of the lift continuously distributed over _ingle parts of ireas is derived from the

preceding one by passing to the limit. Since the vertical velocity m disappears at all points in
the lifting surfaces, the velocity is zero at all points and the rotation vanishes.

:* T/_'efore, iu the case of the most favorable distribution of lift, all of the lon_udinal vortices

from the continuously Zifling are_ begin at _he boungar_ of th_ areas. ,
Equations (43) and (43a) remain. The distribution of lift is indeterminate to a certain

extent. On the other hand, it is possible to connect the points of the contour having the same

potential _oby strips of any form, and it is only necessary that the lift be always perpendicular
to the strip and its density have a constant value along the whole strip. According to equation
(40) this equals the difference of the potential at the contour between the two borders of the

strip. Worthy of note is the special case in which all of the strips run along the contour, thus

coming again to the case of lifting lines. It appears that:
Closed Kn_ have the sam_ mimimum of dra 9 as the enclosed areas when continuously loaded.

Especially important are tho_e symmetrical contours which are cut by horizontal lines in

only two points. With such the limitation to vertical lift does not involve an increase of the
minimum drag. For this case it appears that:

The density of _e vertical lift per unit area m_t be proportional to the vertical component of

ff_ _lovity qf tlw. _wo-dimensional flow at the point of the contour of the same height z. It is

The corresponding density of drag is ,

(45)
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Examples0f calculation of the previous demonstrations can be based on any calculated
two-dimensional potential flow around p_rts of lines or areas. The simplest flow of the first
kind is that around a single horizontal line. It:leads to the problem investigated at the be_o

ning of this paper.
,In ,t2_ case the potential is the real part.of _ where p .denotes =_r/z. The lifting

line joins the two points z-O, z- --1 and z-O, zl .+1, and has .the te_gt_ 2. The velocity at

_tyis _--I. The discontinuity of potential along the lifting line is _=-_t..2_/1--'_. The

density of lift is distributed according to the same law, therefore if plotted over the span the

density of lift would be represented by the half of an ellipse.
The minimum drag is .......

(46)

If,insteadofthevalue2,thespanhad thegeneralvalueb, the mum drag would be

1 !
W-A 2 . (47)

This same result has been obtained by Prof. Prandtl by another method.'
The simplest example for a lifting vertical area is the circle. Let its center coincide wiuh

the origin of the system of coordinates. Then the potential of the flow around this circle is

(48)

where r-_ At infinity Wo- 1. Under •the,...,e°ndlti°n of andacc0rding to equation (40)
the densityofliftis '• • ".... "........

• "_ ._. • _. " -_:H .... :_1_ "_. ._:_ . ,x • l .,'. %: _.:• . , _-- -,_?,:

,, .... -.. -, _/_' \- , . - .... ,, . . '....
-:_-_(_÷zi:._-_":"::._ _':.... "_" ,"-. ,., ".:' ;, (49),- " ,,:'., :' -.., ..-_.i /._.,,.::._,, .... - ..,.:_ .. .,. ,- .. .--.,. ,

TI_ _1_ in a constant den_:ty of lift o_A'-2. Theref_¢-e thedr_:_" ...... _'"

(5o)..... __, v_p/=.8,r .....

The double integral is to be taken over the ci_le. If _e gane_l _e.for the diameter
equal to D be consideee_ then the least drag k .: ._, ._,:, ,_,.,:...:. • -,,_,.... :-__..... ..

-.,, W'-A,- -,,,,......

Hence inrespect to the minimum drag the cirole is equivalent to a lifting line having

a length _ limes the diameter. ':_ ' ":' " • :.....
A liftingcircularlinewould have the same minimum drag asthe circulararea. ":
This result was also vbtained by Prof. Prandtl by another method.' A reduction of the

original problem of variation to the two-dimensional flow sometimes enables a survey of the
result to be made without calculation. For instance, let a third aerofoil be added between the
two aerofoils of a biplane having a small gap. (The gap may be about one-sixth of the

epan.) Then, in order to find the most favorable distribution of lift, the double line about
which the flow occurs is to be replaced by three lifting lines. Now, in the region of the middle

lifting line the velocity is small, even before this line is introduced. Therefore the discontinuity
of the potential along the middle line is very much smaller than that along the others. Hence
it results that the middle aerofoil of a triplane should lift less than the other two.

. First eommm31estlon eoncerning t _ Zettse/xrift fltr Flugtechnik u_d Motorl, 191/. S. _, in • note _ Bet&

* See _ehnlee.he Bm_ehte d_ F_4d Rd. II Hl(t L

.. ,' _.._ _,.
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• The preceding results do not apply so much to the. -_.leulation of the most favorable distribu-

tion of lift as to the calculation of the least drag. For i_ .'upears, and the results are checked
by calculation, that even considerable variations from the con_:_ion of most favorable distribu-

.tmn of lift do not increase the drag to any great extent• Usually the mJnimmn drag can be
considered as the real dr.ag of the system of aerofoils and in order to allow for the effect of

friction of the air it is SUfficient to make an addition. This addition depends chiefly upon the

:aerofoil section; it also depends, omitting the Reynolds Number, only upon the area of the
wings and on the dynamical pressure. It is independent of the dimensions of the system of

wings themselves. It may be useful to have a name for that part of the density of drag, inde-
pendent of the friction of the air, which results from the theory developed in this paper. It is

called the "induced drag." Generally it is not the drag itself but an absolute coefficient which
is considered. This coefficient is defined by

(52)

where W_ is the drag previously denoted by IV, _ is the dynamical pressure voW.plY, and F is

the total area of the wings. Equation (43) can now be written

e_s.F
c_ - r (k. b)' (53)

14

where e. is the lift coefficient _ corresponding to c_. The greatest horizontal span b of the

system of wings perpendicular to the direction of flight is arbitrarily chosen as a length char-

acteristic of the proportions of the system, k is a factor characteristic of the system of aero-
foils and has, according to the preceding, the value.

i --

. v.. _'_'_ :_-:." - - " " _.,'. _:"'_,- '_t_.;_

,-It has a special physical sig_can._e_ i,:_:i:. :, i.: i/iiii::, _-_.,, ..
......... Under the same c__ singl_ aerofcnT'wlth',a span of l_'times the mazlmum span of a

The demonstrations given rest on the assumption that the velocities produced by the

vortices are small in comparison with the velocity of flight. The next assumption, more ac-

curate, would be that only powers higher than the first power could be neglected.
In this ease the solutions just found for lifting elements in a transverse plane can be con-

sidered as the first step towards the calculation of more exact solutions. The following steps

must be taken: The exact density of drag is W'---A '-_ where v is the horizontal velocity
v o -t-v

produced at the lifting elements by the transverse vortices. It can be calculated exactly

.... :: _enough from the first approximation. Now, th'e condition of least drag is

.... :' ( v)-, _: w.eos _+t_ sin #=wo cos _ 1+_, (15d)

• .:-':" 0.... and the flow of potential, according to this condition at the boundary, is to be found. Compared
with the first approximation the density below is in general somewhat increased and the den-

airy above is somewhat decreased. The minimum drag changes only by quantities of the
second order.



If the lifting elementsaredistributedin threedimensionsasimilarrefinementcaneasily
be found. In thiscasethereis to be takeninto considerationa secondfactorwhichalways
comesin if the differences of the longitudinal coordinates of the lifting elements are consider-

able. The direction of the longitudinal vortices do not agree exactly with the direction of

flight, but they coincide with the direction of the velocity of the fluid around the aerofoil.
They are therefore somewhat inclined downwards. Abetter approximation is obtained by

projecting the lifting elements not in the direction of flight but in a direction slightly inclined
2wo

Upwards from the rear to the front. This,inclination is about "_0" Except for this, the method

o! calculation remains unchanged. _
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